ATLAS Jet Flavor Tagging with AI: The GN2 Algorithm cover art

ATLAS Jet Flavor Tagging with AI: The GN2 Algorithm

ATLAS Jet Flavor Tagging with AI: The GN2 Algorithm

Listen for free

View show details

About this listen

he ATLAS Experiment at CERN has embraced modern AI techniques to revolutionise jet flavour tagging, a crucial process in analysing particle collisions. A new algorithm called GN2, powered by a Transformer neural network, directly analyses information from particle tracks and jets, eliminating the need for previous, hand-crafted algorithms. This advancement significantly improves the identification of b-jets and c-jets, which are vital for Standard Model measurements and the search for new physics phenomena. The ATLAS Collaboration has established robust pipelines to integrate and train these AI algorithms, leading to a substantial leap in performance and offering deeper insights into the physics signatures learned by the model. This innovative approach is already having a significant impact on ATLAS physics research, including enhancing the precision of Higgs boson studies and the search for new particles.


Paper link: https://arxiv.org/pdf/2505.19689

No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.