Pal Talk - Statistics cover art

Pal Talk - Statistics

Pal Talk - Statistics

By: Dr Chinmoy Pal
Listen for free

About this listen

পরিসংখ্যান বিশ্লেষণ হল তথ্য (ডেটা) সংগ্রহ, সংগঠন, বিশ্লেষণ এবং ব্যাখ্যার একটি প্রক্রিয়া, যার মাধ্যমে বিভিন্ন প্রবণতা, সম্পর্ক ও সিদ্ধান্ত নির্ধারণ করা যায়। এটি গবেষণা, ব্যবসা, স্বাস্থ্যসেবা এবং নীতিনির্ধারণে গুরুত্বপূর্ণ ভূমিকা রাখে।Dr Chinmoy Pal Science
Episodes
  • SA-EP20:Normalization vs. Standardization:ডেটা স্কেলিং: নরমালাইজেশন বনাম স্ট্যান্ডার্ডাইজেশন
    Jul 17 2025

    ডঃ চিন্ময় পালের লেখা "ডেটা স্কেলিং: নরমালাইজেশন বনাম স্ট্যান্ডার্ডাইজেশন" শিরোনামের একটি নিবন্ধ ডেটা প্রস্তুতির দুটি গুরুত্বপূর্ণ পদ্ধতি নিয়ে আলোচনা করেছে: নরমালাইজেশন এবং স্ট্যান্ডার্ডাইজেশন। এই পদ্ধতিগুলি ডেটা মডেলের কার্যকারিতা উন্নত করতে ব্যবহৃত হয়, কারণ ডেটা প্রায়শই বিভিন্ন স্কেলে থাকে, যা ডেটা বিশ্লেষণকে জটিল করে তুলতে পারে। নিবন্ধটিতে ব্যাখ্যা করা হয়েছে যে নরমালাইজেশন ডেটাকে একটি নির্দিষ্ট সীমার মধ্যে নিয়ে আসে, যেমন ০ থেকে ১, এবং এটি K-Nearest Neighbors (KNN) এবং নিউরাল নেটওয়ার্কের মতো অ্যালগরিদমের জন্য উপযুক্ত। অন্যদিকে, স্ট্যান্ডার্ডাইজেশন ডেটাকে গড় ০ এবং স্ট্যান্ডার্ড ডেভিয়েশন ১-এ রূপান্তর করে, যা লিনিয়ার রিগ্রেশন বা সাপোর্ট ভেক্টর মেশিন (SVM) এর মতো মডেলের জন্য আদর্শ। পরিশেষে, লেখক পরামর্শ দিয়েছেন যে ডেটা স্কেলিংয়ের প্রয়োজন অ্যালগরিদম এবং ডেটার বৈশিষ্ট্যের উপর নির্ভর করে, কারণ কিছু অ্যালগরিদম, যেমন ট্রি-ভিত্তিক পদ্ধতি, এর প্রয়োজন হয় না।

    Show More Show Less
    9 mins
  • SA-EP19:Outlier Detection:আউটলায়ার সনাক্তকরণ: ডেটা অন্তর্দৃষ্টির চাবিকাঠি
    Jul 17 2025

    ড. চিন্ময় পালের লেখা "আউটলায়ার সনাক্তকরণ: ডেটা অন্তর্দৃষ্টির চাবিকাঠি" শিরোনামের উৎসটি আউটলায়ার সনাক্তকরণ এর গুরুত্ব নিয়ে আলোচনা করে। এই লেখায় বলা হয়েছে যে আউটলায়ার হলো এমন ডেটা পয়েন্ট যা ডেটাসেটের বাকি অংশ থেকে উল্লেখযোগ্যভাবে ভিন্ন। আউটলায়ারগুলির কারণ যেমন ডেটা এন্ট্রি ত্রুটি, পরিমাপের ত্রুটি, বা স্বাভাবিক পরিবর্তনশীলতা তুলে ধরা হয়েছে। এই আউটলায়ারগুলি কেন গুরুত্বপূর্ণ, যেমন তারা মেট্রিক্সকে বিকৃত করতে পারে বা মডেলগুলিকে বিভ্রান্ত করতে পারে তা ব্যাখ্যা করা হয়েছে। এছাড়া, আউটলায়ার সনাক্তকরণের বিভিন্ন পদ্ধতি যেমন পরিসংখ্যানগত কৌশল (Z-স্কোর, IQR), ভিজ্যুয়াল কৌশল (স্ক্যাটার প্লট), এবং মেশিন লার্নিং পদ্ধতি (আইসোলেশন ফরেস্ট, DBSCAN) আলোচনা করা হয়েছে। পরিশেষে, আউটলায়ার কীভাবে পরিচালনা করতে হয় এবং ডেটা বিশ্লেষণে তাদের যথাযথভাবে মোকাবেলা করার সেরা অনুশীলনগুলি নিয়ে একটি বিস্তারিত চিত্র দেওয়া হয়েছে।

    Show More Show Less
    6 mins
  • SA-EP18: Handling Missing Values: উপাত্তে অনুপস্থিত মান: বিশ্লেষণ ও সমাধান
    Jul 17 2025

    ড. চিন্ময় পালের লেখাটি ডেটা বিশ্লেষণে অনুপস্থিত মানগুলি কীভাবে পরিচালনা করা যায় তা নিয়ে আলোচনা করে, যা অসম্পূর্ণ ডেটা বিশ্লেষণের ফলাফলের উপর নেতিবাচক প্রভাব ফেলতে পারে। এটি ব্যাখ্যা করে যে অনুপস্থিত মানগুলি কেন ঘটে, যেমন মানব ত্রুটি বা সেন্সর ব্যর্থতা থেকে, এবং কীভাবে বিভিন্ন ধরনের অনুপস্থিতি সনাক্ত করা যায়, যেমন MCAR, MAR, বা MNAR। লেখাটি অনুপস্থিত মানগুলি খুঁজে বের করার পদ্ধতি যেমন পাইথনের পান্ডাস ফাংশন ব্যবহারের মাধ্যমে এবং এগুলি সমাধান করার জন্য বিভিন্ন কৌশল উপস্থাপন করে। সমাধানের কৌশলগুলির মধ্যে রয়েছে অনুপস্থিত সারি বা কলামগুলি মুছে ফেলা অথবা অনুপস্থিত মানগুলি গড়, মধ্যক, বা মডেল-ভিত্তিক পদ্ধতির মাধ্যমে প্রতিস্থাপন করা। সবশেষে, এটি ডেটা সেট এবং বিশ্লেষণের উদ্দেশ্যের উপর ভিত্তি করে সঠিক পদ্ধতি বেছে নেওয়ার গুরুত্ব তুলে ধরে।

    Show More Show Less
    10 mins
No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.