
SA-EP20:Normalization vs. Standardization:ডেটা স্কেলিং: নরমালাইজেশন বনাম স্ট্যান্ডার্ডাইজেশন
Failed to add items
Add to basket failed.
Add to Wish List failed.
Remove from Wish List failed.
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
By:
About this listen
ডঃ চিন্ময় পালের লেখা "ডেটা স্কেলিং: নরমালাইজেশন বনাম স্ট্যান্ডার্ডাইজেশন" শিরোনামের একটি নিবন্ধ ডেটা প্রস্তুতির দুটি গুরুত্বপূর্ণ পদ্ধতি নিয়ে আলোচনা করেছে: নরমালাইজেশন এবং স্ট্যান্ডার্ডাইজেশন। এই পদ্ধতিগুলি ডেটা মডেলের কার্যকারিতা উন্নত করতে ব্যবহৃত হয়, কারণ ডেটা প্রায়শই বিভিন্ন স্কেলে থাকে, যা ডেটা বিশ্লেষণকে জটিল করে তুলতে পারে। নিবন্ধটিতে ব্যাখ্যা করা হয়েছে যে নরমালাইজেশন ডেটাকে একটি নির্দিষ্ট সীমার মধ্যে নিয়ে আসে, যেমন ০ থেকে ১, এবং এটি K-Nearest Neighbors (KNN) এবং নিউরাল নেটওয়ার্কের মতো অ্যালগরিদমের জন্য উপযুক্ত। অন্যদিকে, স্ট্যান্ডার্ডাইজেশন ডেটাকে গড় ০ এবং স্ট্যান্ডার্ড ডেভিয়েশন ১-এ রূপান্তর করে, যা লিনিয়ার রিগ্রেশন বা সাপোর্ট ভেক্টর মেশিন (SVM) এর মতো মডেলের জন্য আদর্শ। পরিশেষে, লেখক পরামর্শ দিয়েছেন যে ডেটা স্কেলিংয়ের প্রয়োজন অ্যালগরিদম এবং ডেটার বৈশিষ্ট্যের উপর নির্ভর করে, কারণ কিছু অ্যালগরিদম, যেমন ট্রি-ভিত্তিক পদ্ধতি, এর প্রয়োজন হয় না।