
SA-EP19:Outlier Detection:আউটলায়ার সনাক্তকরণ: ডেটা অন্তর্দৃষ্টির চাবিকাঠি
Failed to add items
Add to basket failed.
Add to Wish List failed.
Remove from Wish List failed.
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
By:
About this listen
ড. চিন্ময় পালের লেখা "আউটলায়ার সনাক্তকরণ: ডেটা অন্তর্দৃষ্টির চাবিকাঠি" শিরোনামের উৎসটি আউটলায়ার সনাক্তকরণ এর গুরুত্ব নিয়ে আলোচনা করে। এই লেখায় বলা হয়েছে যে আউটলায়ার হলো এমন ডেটা পয়েন্ট যা ডেটাসেটের বাকি অংশ থেকে উল্লেখযোগ্যভাবে ভিন্ন। আউটলায়ারগুলির কারণ যেমন ডেটা এন্ট্রি ত্রুটি, পরিমাপের ত্রুটি, বা স্বাভাবিক পরিবর্তনশীলতা তুলে ধরা হয়েছে। এই আউটলায়ারগুলি কেন গুরুত্বপূর্ণ, যেমন তারা মেট্রিক্সকে বিকৃত করতে পারে বা মডেলগুলিকে বিভ্রান্ত করতে পারে তা ব্যাখ্যা করা হয়েছে। এছাড়া, আউটলায়ার সনাক্তকরণের বিভিন্ন পদ্ধতি যেমন পরিসংখ্যানগত কৌশল (Z-স্কোর, IQR), ভিজ্যুয়াল কৌশল (স্ক্যাটার প্লট), এবং মেশিন লার্নিং পদ্ধতি (আইসোলেশন ফরেস্ট, DBSCAN) আলোচনা করা হয়েছে। পরিশেষে, আউটলায়ার কীভাবে পরিচালনা করতে হয় এবং ডেটা বিশ্লেষণে তাদের যথাযথভাবে মোকাবেলা করার সেরা অনুশীলনগুলি নিয়ে একটি বিস্তারিত চিত্র দেওয়া হয়েছে।