• 383. Inteligencia artificial y comportamiento social: una mirada desde los sistemas multi-agente, con Carles Sierra
    Feb 7 2026

    Hoy exploramos el estudio de lo social desde la inteligencia artificial, centrándonos en los sistemas multiagente. Hablamos con Carles Sierra, investigador del IIIA-CSIC y referente internacional en este campo, sobre cómo los sistemas formados por múltiples agentes autónomos pueden ayudarnos a entender fenómenos sociales complejos como la cooperación, el conflicto, las normas o la confianza.


    Durante la conversación abordamos qué es exactamente un agente, cómo se define formalmente y qué implica que tenga autonomía, reactividad, proactividad y una dimensión social. Discutimos también dos enfoques principales para su diseño: los modelos basados en conocimientos, donde las reglas se programan explícitamente, y los modelos basados en datos, donde los agentes aprenden a partir de ejemplos. Además, hablamos del papel creciente de los modelos híbridos, que combinan grandes modelos de lenguaje con razonamiento simbólico para sortear algunas de las limitaciones actuales.


    Carles explica con detalle cómo su grupo utiliza estos enfoques para simular situaciones sociales reales. Un ejemplo especialmente interesante es el uso del juego cooperativo Hanabi como laboratorio para estudiar la teoría de la mente en agentes, es decir, su capacidad para inferir lo que otros agentes saben o creen. Este tipo de simulaciones no solo permite mejorar el diseño de agentes más sofisticados, sino también plantear hipótesis sobre el comportamiento humano desde una perspectiva computacional.


    La charla también aborda aplicaciones prácticas como la simulación de evacuaciones en contextos de emergencia o el uso de realidad virtual para entrenamiento. En todos estos escenarios es clave el trabajo conjunto con expertos en psicología, sociología o cuerpos de emergencia, lo que refuerza la dimensión multidisciplinar de esta línea de investigación.


    Hablamos además de la conexión con la teoría de juegos y la racionalidad, de cuellos de botella técnicos como la comunicación entre agentes, y de cómo los modelos de lenguaje actuales están empezando a ofrecer soluciones en ese frente. Carles comparte su visión sobre la evolución de este campo, los retos futuros y el contexto global, con referencias al crecimiento exponencial de la investigación en inteligencia artificial en países como China.


    En la parte final, reflexiona sobre su trayectoria, los momentos que más satisfacción le han dado como investigador y ofrece recomendaciones claras para quienes quieran adentrarse en este tipo de investigación.


    Recursos mencionados


    - Hanabi (juego cooperativo): https://boardgamegeek.com/boardgame/98778/hanabi


    - Teoría del equilibrio de Nash: https://en.wikipedia.org/wiki/Nash_equilibrium


    - Congreso IJCAI: https://ijcai.org/


    - Congreso AAMAS: https://aamas.org/


    - Proyecto ADA (China): red de satélites con LLMs embebidos


    Para contactar a Carles Sierra:

    - Instituto de Investigación en Inteligencia Artificial (IIIA-CSIC): https://www.iiia.csic.es/~sierra/



    Si el episodio te ha resultado interesante, puedes apoyarlo dándole a like, suscribiéndote o compartiéndolo en tu plataforma habitual (Spotify, Apple Podcasts, iVoox, YouTube, etc.). Es un gesto que te cuesta muy poco y que ayuda muchísimo a que este podcast siga creciendo y llegue a más personas.

    Show More Show Less
    50 mins
  • 382. Investigación exploratoria: del cribado químico a la creación sonora
    Feb 4 2026

    En este episodio de _Investigando la Investigación_ reflexiono sobre una forma de investigar que no siempre parte de una pregunta clara ni de una metodología cerrada: la investigación exploratoria. Una investigación que surge al hacer, al probar y al interactuar con sistemas que nos devuelven feedback, incluso cuando no sabemos exactamente qué estamos buscando.


    Parto del propio recorrido del podcast, que comenzó centrado en investigación académica en informática y que, con el tiempo, se ha ido abriendo a otras ciencias, a las humanidades, al arte y, en general, a cualquier contexto donde exista un proceso investigador. Tras cerca de 380 episodios, el objetivo sigue siendo el mismo: documentar y explorar cómo se investiga, dentro y fuera de los marcos académicos reglados.


    Para concretar esta idea, comparo dos contextos muy distintos. Por un lado, la investigación que hacemos en mi grupo de investigación, basada en el screening computacional de miles o millones de compuestos químicos para identificar posibles candidatos con utilidad farmacológica u otras aplicaciones. Se trata de un proceso altamente metodológico, algorítmico y con métricas objetivas bien definidas. Por otro lado, mi exploración personal en la creación sonora y musical, utilizando herramientas de producción digital desde una posición no profesional y completamente autodidacta.


    A partir de esta comparación, una de las conclusiones centrales del episodio es que la ausencia de una pregunta de investigación clara al inicio no invalida el proceso investigador. En los contextos exploratorios, la pregunta, la metodología y los criterios de evaluación pueden emerger progresivamente, a medida que el investigador interactúa con el sistema que está explorando. Además, el hecho de trabajar con respuestas subjetivas, como ocurre en la investigación sonora, no convierte la investigación en algo arbitrario: esas respuestas forman parte del propio objeto de estudio y proporcionan un feedback relevante.


    En este sentido, la diferencia entre una investigación más objetiva y una exploratoria no es la existencia o no de rigor, sino el tipo de señal que se obtiene. En el cribado de compuestos químicos, la molécula no responde al investigador; en la exploración sonora, el sonido sí lo hace, generando sensaciones que informan el proceso. En ambos casos, sin embargo, existe un proceso sistemático de acumulación de experiencia, reflexión y generación de conocimiento.


    De esta exploración musical surgen también conclusiones metodológicas concretas. Por ejemplo, he identificado flujos de trabajo que para mí resultan más eficientes, como trabajar con un número reducido de pistas o instrumentos. También he observado la importancia del caos y la aleatoriedad frente a enfoques completamente deterministas, tanto en la preparación del sistema como en la ejecución. Estas decisiones, aunque personales, forman parte del resultado de la investigación y pueden ser compartidas y discutidas.


    Este episodio sirve además como punto de partida de una nueva línea dentro del podcast, centrada en procesos de investigación exploratoria, especialmente en contextos donde la pregunta y la metodología se definen a posteriori. En próximos episodios entraré en ejemplos más concretos y compartiré material sonoro como apoyo, entendiendo ese resultado final casi como material suplementario, mientras que el foco principal sigue siendo el proceso investigador.


    Si el episodio te ha resultado interesante, puedes apoyarlo dándole a like, suscribiéndote o compartiéndolo en tu plataforma habitual (Spotify, Apple Podcasts, iVoox, YouTube, etc.). Eso ayuda a que _Investigando la Investigación_ siga creciendo y llegue a más personas.

    Show More Show Less
    17 mins
  • 381. De escribir código a orquestar agentes: así está cambiando la programación con IA
    Feb 1 2026

    En este episodio de Investigando la Investigación me adentro en un terreno más técnico de lo habitual para hablar de herramientas de inteligencia artificial aplicadas a la programación y, sobre todo, del cambio de paradigma que estamos viviendo en la forma de desarrollar software. Empiezo recordando cómo usábamos —y muchos seguimos usando— modelos como ChatGPT para programar: pedir fragmentos de código, copiarlos en un editor, ejecutarlos, detectar errores y volver a iterar en un proceso manual y relativamente lento. Ese enfoque sigue siendo útil, pero empieza a quedarse corto frente a lo que está apareciendo ahora.


    En los últimos meses han surgido muchas herramientas que introducen la llamada programación basada en agentes. Ya no hablamos solo de generar código, sino de sistemas que analizan una petición, la descomponen en tareas, orquestan agentes que trabajan en paralelo y deciden cómo implementar una solución completa. Menciono brevemente algunas de estas herramientas, pero el foco del episodio se centra en Cursor, que a día de hoy me parece una de las opciones más completas. Cursor es, en esencia, un fork de Visual Studio Code que integra este enfoque y permite trabajar con proyectos reales, con múltiples ficheros, relaciones complejas y ejecución directa del código generado.


    Uno de los puntos clave del episodio es entender los distintos modos de trabajo de Cursor. Por un lado está el modo pregunta, pensado para discutir ideas y requisitos sin generar código. Luego está el modo plan, donde el sistema traduce esas ideas en un plan detallado de implementación que conviene revisar con calma y nunca aceptar a la primera. A partir de ahí entramos en el modo agente o de construcción, donde la herramienta despliega uno o varios agentes que implementan el plan, a menudo en paralelo. Finalmente, el modo depuración introduce un enfoque muy interesante basado en la generación y comprobación sistemática de hipótesis para localizar errores, de una forma mucho más transparente que los métodos anteriores.


    También hablo de aspectos prácticos importantes, como la posibilidad de elegir distintos modelos de lenguaje según la tarea, la necesidad de controlar bien los permisos que damos a los agentes y la importancia crítica del versionado del código para poder volver atrás cuando una iteración rompe algo que antes funcionaba. Dedico además parte del episodio a explicar las limitaciones del contexto y la memoria de estos sistemas y cómo gestionar sesiones largas para evitar errores sutiles.


    Para cerrar, planteo una reflexión más general: el rol del programador está cambiando hacia uno más cercano al de gestor de proyectos. Cada vez menos escribimos código línea a línea y cada vez más diseñamos planes, supervisamos agentes y validamos resultados. En este nuevo escenario, el trabajo realmente crítico pasa a ser el diseño de buenos planes y, sobre todo, de tests sólidos y fiables, que se convierten en el verdadero contrato del sistema. Todo apunta a que este cambio no ha hecho más que empezar.


    Si este episodio te ha resultado interesante, te agradecería mucho que desde la plataforma donde lo estés escuchando le des a like, lo marques como favorito o te suscribas al podcast. Es un gesto muy sencillo, pero ayuda enormemente a que Investigando la Investigación crezca y pueda llegar cada día a más gente.


    PD: Episodios relacionados: 234, 240, 309, 340, 341, 378

    Show More Show Less
    46 mins
  • 380. Cuando no posponer crea un agujero negro mental
    Jan 28 2026

    En este episodio parto de algo que, a primera vista, parece no tener nada que ver con la investigación que hago en mi grupo de investigación ni con el día a día de cualquiera de nosotros: los agujeros negros. Uso el límite de Chandrasekhar como excusa conceptual para hablar de otra cosa muy distinta. Igual que una estrella colapsa cuando supera cierta masa crítica, las personas colapsamos cuando superamos nuestro propio límite de tareas simultáneas. No importa que las tareas sean fáciles o cortas: a partir de cierto número aparece una fricción cognitiva enorme que lo vuelve todo inmanejable.



    La idea clave es sencilla y bastante poco glamurosa: no podemos tenerlo todo delante a la vez. La mayoría tenemos listas interminables de cosas por hacer, pero casi nunca es necesario —ni realista— ejecutarlas todas hoy. Mi propuesta es volver de forma deliberada a una cota inferior de ese “límite de Chandrasekhar” personal: quedarnos solo con tres, cinco tareas como máximo en el corto plazo, las únicas que realmente vamos a ejecutar. El resto no se eliminan, simplemente desaparecen de nuestra vista para no consumir energía mental. No es procrastinar, es organizar la ejecución.



    Donde esto se vuelve especialmente delicado es en el correo electrónico. El email mezcla tareas, información, seguimientos y ruido, todo sin estructura clara. Aquí cuento cómo uso la opción de posponer correos, por ejemplo en Gmail, pero con cabeza: no mandar todo a la misma fecha futura, sino distribuirlos según urgencia y prioridad. Algunos volverán en días, otros en semanas, otros quizá en un mes. Y, de vez en cuando, revisar esa lista de correos pospuestos para asegurarse de que nada se descontrola. La idea, en el fondo, es siempre la misma: evitar que nuestro sistema mental colapse por exceso de masa.


    Si este episodio te ha resultado útil, te agradecería que en la plataforma donde lo estés escuchando le des a like, dejes un comentario o te suscribas al podcast. Estos pequeños gestos ayudan a que Investigando la Investigación tenga más alcance y pueda llegar a más personas interesadas en entender y vivir la investigación desde dentro.

    Show More Show Less
    15 mins
  • 379. Cómo remontar rechazos
    Jan 22 2026

    En la investigación no todo es generar ideas o redactar manuscritos. También hay un momento inevitable en el que otras personas evalúan aquello en lo que hemos invertido mucho tiempo y esfuerzo. En el caso de los artículos científicos, este proceso suele permitir réplica y nuevas oportunidades. Sin embargo, en las convocatorias de financiación la situación es distinta, ya que muchas veces no existe la posibilidad de volver a presentarse.


    Cuando una convocatoria es única o no se repite, un rechazo puede tener un impacto mucho mayor. Este episodio no se centra en el rechazo en sí, sino en las opciones reales que existen para afrontarlo de forma crítica. Una de ellas es la alegación, un mecanismo que, aunque suene legal o ajeno al ámbito investigador, puede ser legítimo y necesario en determinadas circunstancias.


    La alegación solo tiene sentido cuando existe un informe de evaluación detallado y unas bases de convocatoria claras. Antes de iniciar este proceso, es imprescindible un ejercicio de honestidad personal. No todas las evaluaciones negativas son injustas, y alegar solo es recomendable cuando existen errores objetivos, omisiones claras o contradicciones con las propias normas de la convocatoria.


    Entre los errores más habituales que pueden justificar una alegación se encuentran la supuesta falta de documentación que sí fue entregada o críticas a aspectos que no eran exigidos. En estos casos, el proceso pasa por analizar el informe con calma, identificar los puntos problemáticos y redactar un documento formal, respetuoso y constructivo, dirigido a la entidad financiadora.


    La alegación debe centrarse exclusivamente en hechos verificables y argumentos sólidos, evitando opiniones personales o valoraciones subjetivas. Herramientas de inteligencia artificial pueden ayudar a mejorar el lenguaje o el tono final del documento, pero el contenido y el razonamiento deben partir siempre de la persona solicitante.


    Más allá del resultado, el proceso de alegación tiene un valor formativo importante. Obliga a comprender mejor cómo funcionan los sistemas de evaluación y ayuda a desarrollar una mirada crítica que será útil tanto para futuras solicitudes como para el día en que uno mismo esté al otro lado, evaluando propuestas de otras personas.


    Si este episodio te ha resultado útil, te agradecería que en la plataforma donde lo estés escuchando le des a like, dejes un comentario o te suscribas al podcast. Estos pequeños gestos ayudan a que Investigando la Investigación tenga más alcance y pueda llegar a más personas interesadas en entender y vivir la investigación desde dentro.

    Show More Show Less
    22 mins
  • 378. Los cambios de paradigma en programación
    Jan 8 2026

    En este episodio de Investigando la Investigación quería reflexionar, desde una perspectiva muy personal, sobre cómo ha ido cambiando la programación a lo largo del tiempo y sobre el punto en el que creo que nos encontramos ahora. Todo parte de una historia que escuché sobre cómo uno de mis directores de tesis programaba alrededor de 1975, cuando el código se escribía en papel, se pasaba a tarjetas perforadas y se enviaba a un ordenador central para su compilación. Un proceso lento, extremadamente frágil y lleno de fricción, en el que cualquier error implicaba rehacer gran parte del trabajo.


    Con la llegada de los ordenadores personales en los años ochenta, este modelo desapareció y programar pasó a ser algo que podía hacerse de manera local. Aun así, durante muchos años siguió siendo un proceso muy laborioso, especialmente por la falta de acceso a documentación y manuales. En mi caso, aprendí a programar con lo que encontraba en revistas y mucha prueba y error, hasta que Internet cambió por completo el panorama. Empezaron a surgir comunidades, foros y, más tarde, plataformas como Stack Overflow, que aceleraron enormemente el aprendizaje y la resolución de problemas, aunque el paradigma seguía siendo escribir y depurar código línea a línea.


    El siguiente gran salto llegó en torno a 2023 con la aparición de herramientas como ChatGPT, que empezaron a actuar como asistentes de programación capaces de generar código y ayudar a depurarlo. Pero el verdadero cambio de paradigma, en mi opinión, está ocurriendo ahora, entre finales de 2024 y 2025, con las herramientas basadas en agentes. Ya no se trata solo de generar fragmentos de código, sino de sistemas capaces de descomponer proyectos complejos, ejecutar tareas en paralelo y acelerar enormemente el desarrollo, tanto para personas con pocos conocimientos técnicos como para programadores con experiencia.


    Todo esto está transformando el rol del programador, que cada vez se parece más al de un ingeniero o gestor de proyectos: alguien que sabe estructurar problemas, guiar herramientas complejas, detectar errores y validar resultados, más que escribir código de forma manual todo el tiempo. En este contexto, también creo que es clave mantenerse informado a través de redes técnicas como Twitter o LinkedIn, donde el ritmo de innovación es mucho más visible que en otros formatos.


    A partir de estas ideas, comento también algunos proyectos en los que estoy trabajando, tanto herramientas personales como una plataforma pública llamada Explore Labs, orientada a ofrecer utilidades prácticas para procesos de investigación, como el análisis y la pre-revisión de artículos científicos.

    Puedes acceder a la plataforma en: https://explore-labs.com

    Show More Show Less
    24 mins
  • 377. Poda de ideas
    Jan 2 2026

    El problema no es generar muchas ideas; de hecho, generar muchas ideas suele ser una ventaja. El problema aparece cuando esas ideas se acumulan sin un criterio claro y terminan diluyendo el foco original. Generar cantidad no implica generar calidad, ni mucho menos avanzar. Cuando las ideas se multiplican sin control, se vuelve difícil identificar qué es realmente importante y qué simplemente añade ruido.


    Desde hace varios años utilizo Obsidian como sistema de gestión de notas, algo que he comentado en detalle en episodios anteriores del podcast. En particular, uso mucho las notas diarias: cada día aparece una nota en blanco en la que vuelco cualquier idea que se me ocurre, sobre cualquier tema, en el momento en que aparece. Más adelante reviso ese material y, si una idea lo merece, la convierto en una nota independiente donde empiezo a desarrollarla con más calma.


    El problema surge cuando, a partir de una idea inicial —el tronco—, empiezo a añadir demasiadas subideas. Llega un punto en el que el documento crece tanto que pierdo la visión global. Me cuesta distinguir qué partes son esenciales y cuáles son accesorias y, cuando vuelvo tiempo después a esa nota, me encuentro con un desorden que genera fricción. Esa fricción acaba provocando procrastinación y hace que no vuelva a ideas que, en el fondo, pueden ser muy valiosas.


    Aquí es donde entra el concepto de poda. Igual que en jardinería se cortan ramas para fortalecer el tronco, con las ideas ocurre algo muy parecido. Sin poda aparece la parálisis por análisis o la sobrecarga creativa: confundimos tener muchas ideas con avanzar, cuando en realidad estamos bloqueándonos.


    La clave, al menos en mi experiencia, es tener una estrategia de poda definida. No basta con pensar que ya se revisará más adelante; si no hay criterios claros, la poda no se hace. Algunos de los criterios que utilizo son si una subidea refuerza o no la idea principal, si es práctica o simplemente interesante pero poco accionable, o si se aleja demasiado del objetivo inicial. Estos criterios no son universales: dependen mucho del tipo de proyecto y de cómo trabaja cada persona.


    No es lo mismo, por ejemplo, un proyecto científico, donde todo debe girar alrededor de un eje muy concreto, que un proyecto creativo o artístico, donde la dispersión puede ser parte del proceso. En cualquier caso, lo importante es que esos filtros existan y estén definidos, mejor aún si están por escrito para poder revisarlos de vez en cuando.


    Esta lógica de poda no solo aplica a las ideas, sino también al ruido informativo al que estamos expuestos constantemente. Vivimos rodeados de estímulos digitales y, sin filtros propios, es fácil perder dirección. En este contexto, recomiendo el libro Digital Minimalism, de Cal Newport, que aborda precisamente cómo proteger la atención y reducir el ruido en entornos tecnológicos saturados.


    Para cerrar el episodio, comento una novedad: estoy desarrollando una aplicación web orientada a apoyar distintos procesos de investigación mediante herramientas de inteligencia artificial. La aplicación está en fase de pruebas, pero ya permite, por ejemplo, convertir un artículo científico en PDF en un episodio de podcast o simular un proceso de revisión por pares a partir de un borrador. Se puede acceder en explore-labs.com y, por ahora, es gratuita. Iré comentando su evolución en futuros episodios del podcast.

    Show More Show Less
    17 mins
  • 376. 3I/ATLAS: un visitante interestelar bajo la lupa científica
    Dec 23 2025

    Hoy hablamos del cometa 3I/ATLAS, un visitante interestelar que ha atravesado el Sistema Solar y que, durante unas semanas, ha concentrado tanto observaciones científicas intensas como una notable atención mediática. Para ello conversamos con Fernando Moreno, investigador del Instituto de Astrofísica de Andalucía (IAA-CSIC), especializado en polvo cometario y polarimetría, y con Fernando Ortuño, astrónomo con perfil divulgativo y de observación. La conversación sirve para poner orden entre lo que realmente sabemos, lo que todavía está por entender y cómo se construye conocimiento científico cuando solo es posible observar e interpretar, no experimentar directamente.


    Partimos de lo básico: qué es un cometa y cómo se comporta al acercarse al Sol. Los cometas son agregados de hielo y polvo que, al sublimar, generan coma y colas. En el Sistema Solar se distinguen grandes familias asociadas al cinturón de Kuiper y a la nube de Oort. Los cometas interestelares, como 3I/ATLAS, se formaron alrededor de otras estrellas y llegan hasta nosotros tras largos viajes por la galaxia. Desde 2017 solo se han detectado tres objetos de este tipo, lo que hace que cada uno sea especialmente valioso.


    Una parte central del episodio se dedica a explicar por qué muchas de las supuestas “anomalías” de 3I/ATLAS no son tan extrañas. Estructuras como la anticola o cambios en el aspecto del cometa se explican en gran medida por efectos geométricos ligados a la posición del observador. También se discute el papel de la polarimetría, que en este caso apunta a propiedades particulares del polvo, como la posible presencia de partículas grandes de hielo de agua, mezclado con algún componente absorbente, siempre dentro de interpretaciones basadas en modelos y con incertidumbres claras.


    La conversación aborda además el contraste entre ciencia y sensacionalismo. Frente a interpretaciones exóticas, se insiste en aplicar criterios de parsimonia: si un objeto se comporta como un cometa, la explicación más razonable es que lo sea. Finalmente, se destaca el papel de la astronomía amateur y de las colaboraciones pro-am, así como el futuro inmediato del campo, con la llegada de nuevos surveys y telescopios que permitirán detectar más objetos interestelares y pasar de casos aislados a una estadística significativa.


    Contacto de los invitados

    Fernando Moreno
    Instituto de Astrofísica de Andalucía (IAA-CSIC)
    Email: fernando@iaa.es

    Fernando Ortuño
    Web y redes: https://linktr.ee/FerOrtuno
    Email: ferortgue@gmail.com



    Si quieres conversar sobre este tema con otros investigadores, contrastar opiniones o preguntar más, te invito a unirte a nuestra comunidad de investigadores en Discord, disponible en https://horacio-ps.com/comunidad.




    Si este episodio te ha parecido útil o interesante, te agradecería mucho que le des cinco estrellas, un like o te suscribas al canal donde lo estés escuchando. Ayuda muchísimo a que el contenido llegue a más personas.

    Show More Show Less
    1 hr and 20 mins