私立ずんだもん女学園放送部 podcast 20260109 cover art

私立ずんだもん女学園放送部 podcast 20260109

私立ずんだもん女学園放送部 podcast 20260109

Listen for free

View show details

About this listen

youtube版(スライド付き) 関連リンク Dynamic context discovery エンジニアの間で絶大な人気を誇るAIエディタ「Cursor」が、開発効率と精度を劇的に向上させる新技術「Dynamic Context Discovery(動的コンテキスト探索)」を発表しました。 これまでのAI(コーディングエージェント)は、関連しそうな情報をあらかじめプロンプトにすべて詰め込む「静的コンテキスト」に頼ってきました。しかし、情報が多すぎるとトークン(AIが消費する文字数のようなもの)を無駄に消費し、AIが重要な情報を見失って誤答する原因にもなります。そこでCursorは、AIが必要な時に、必要な情報だけを自ら「探しに行く」仕組みへとシフトしました。 このアプローチの核心は「あらゆる情報を『ファイル』として扱う」という非常にシンプルで強力な工夫にあります。具体的には、以下の5つの方法で実装されています。 長い実行結果のファイル化: ツールやコマンドの長い実行結果をプロンプトに直接貼るのではなく、一度ファイルに書き出します。AIは必要に応じてそのファイルを読みに行けるため、情報が途中で切り捨てられる(Truncation)のを防げます。会話履歴の再検索: 会話が長くなり、過去のやり取りを「要約」して圧縮した際、重要な細部が消えてしまうことがあります。履歴をファイルとして保持することで、AIは要約で分からなくなった情報を後から検索して復元できます。Agent Skills(スキルの動的読み込み): 特定のタスク(例:特定のライブラリ操作)の手順を記した「スキル」ファイルを、必要な時だけAIがセマンティック検索で見つけ出し、利用します。MCPツールの効率化: 外部連携ツール(Model Context Protocol)の膨大な定義情報を常に読み込むのではなく、必要なツールの説明だけを動的に読み込みます。これにより、トークン使用量を約47%も削減することに成功しました。ターミナル履歴の同期: 統合ターミナルの出力をファイルとして同期。AIは「grep」などのコマンドを使って、膨大なログの中からエラーの原因だけを特定できます。 新人エンジニアの方にとって、LLMの「コンテキスト制限(一度に覚えられる量の限界)」は大きな壁に感じられるかもしれません。Cursorのこの技術は、情報を闇雲に詰め込むのではなく、「賢く検索して必要な分だけ取り出す」という、ベテランエンジニアがドキュメントを読み解くような動きをAIにさせている点が非常に画期的です。このアップデートにより、大規模なコードベースでもAIがより正確に、そして高速にサポートしてくれるようになります。 引用元: https://cursor.com/blog/dynamic-context-discovery Accelerating LLM and VLM Inference for Automotive and Robotics with NVIDIA TensorRT Edge-LLM NVIDIAは、自動運転車やロボティクスなどのエッジデバイス上で、大規模言語モデル(LLM)や視覚言語モデル(VLM)を高速かつ効率的に動作させるための新しいオープンソースC++フレームワーク「NVIDIA TensorRT Edge-LLM」を発表しました。 背景と開発の目的 これまでLLMの推論フレームワーク(vLLMなど)の多くは、データセンターでの大量の同時リクエスト処理やスループットの最大化を重視して設計されてきました。しかし、自動車やロボットといったエッジ環境では、「単一ユーザーに対する極めて低いレイテンシ」「オフライン環境での動作」「限られたメモリや電力リソース」といった特有の課題があります。TensorRT Edge-LLMは、こうしたエッジ環境特有のニーズに応えるために、ゼロから設計された軽量かつ高性能なソリューションです。 本フレームワークの主な特徴 エッジ特化の軽量設計: C++ベースで依存関係を最小限に抑えており、リソースに制約のある組み込みシステムへの導入が容易です。最新の高速化技術: EAGLE-3 投機的デコーディング: 推論速度を劇的に向上させます。NVFP4 量子化: 高い精度を維持しつつ、メモリ消費と計算負荷を削減します。チャンク化プリフィル (Chunked Prefill): 効率的なトークン処理を可能にします。 高い信頼性: リアルタイム性が求められるミッションクリティカルな製品(自動運転や産業用ロボット)に耐えうる堅牢なパフォーマンスを提供します。 導入の...
No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.