The New Quantum Era - innovation in quantum computing, science and technology cover art

The New Quantum Era - innovation in quantum computing, science and technology

The New Quantum Era - innovation in quantum computing, science and technology

By: Sebastian Hassinger
Listen for free

About this listen

Your host, Sebastian Hassinger, interviews brilliant research scientists, software developers, engineers and others actively exploring the possibilities of our new quantum era. We will cover topics in quantum computing, networking and sensing, focusing on hardware, algorithms and general theory. The show aims for accessibility - Sebastian is not a physicist - and we'll try to provide context for the terminology and glimpses at the fascinating history of this new field as it evolves in real time.(c) Sebastian Hassinger 2025 Physics Science
Episodes
  • Incubating quantum innovation with Vijoy Pandey of Outshift by Cisco
    Oct 31 2025
    Vijoy Pandey joins Sebastian Hassinger for this episode of The New Quantum Era to discuss Cisco's ambitious vision for quantum networking—not as a far-future technology, but as infrastructure that solves real problems today. Leading Outshift by Cisco, their incubation group and Cisco Research, Vijoy explains how quantum networks are closer than quantum computers, why distributed quantum computing is the path to scale, and how entanglement-based protocols can tackle immediate classical challenges in security, synchronization, and coordination. The conversation spans from Vijoy's origin story building a Hindi chatbot in the late 1980s to Cisco's groundbreaking room-temperature quantum entanglement chip developed with UC Santa Barbara, and explores use cases from high-frequency trading to telescope array synchronization.Guest BioVijoy Pandey is Senior Vice President at Outshift by Cisco, the company's internal incubation group, where he also leads Cisco Research and Cisco Developer Relations (DevNet). His career in computing began in high school building AI chatbots, eventually leading him through distributed systems and software engineering roles including time at Google. At Cisco, Vijoy oversees a portfolio spanning quantum networking, security, observability, and emerging technologies, operating at the intersection of research and product incubation within the company's Chief Strategy Office.Key TopicsFrom research to systems: How Cisco's quantum work is transitioning from physics research to systems engineering, focusing on operability, deployment, and practical applications rather than building quantum computers.The distributed quantum computing vision: Cisco's North Star is building quantum network fabric that enables scale-out distributed quantum computing across heterogeneous QPU technologies (trapped ion, superconducting, etc.) within data centers and between them—making "the quantum network the solution" to quantum's scaling problem and classical computing's physics problem.Room-temperature entanglement chip: Cisco and UC Santa Barbara developed a prototype photonic chip that generates 200 million entangled photon pairs per second at room temperature, telecom wavelengths, and less than 1 milliwatt power—enabling deployment on existing fiber infrastructure without specialized equipment.Classical use cases today: How quantum networking protocols solve present-day problems in synchronization (global database clocks, telescope arrays), decision coordination (high-frequency trading across geographically distributed exchanges), and security (intrusion detection using entanglement collapse) without requiring massive qubit counts or cryogenic systems.Quantum telepathy for HFT: The concept of using entanglement and teleportation to coordinate decisions across locations faster than the speed of light allows classical communication—enabling fairness guarantees for high-frequency trading across data centers in different cities.Meeting customers where they are: Cisco's strategy to deploy quantum networking capabilities alongside existing classical infrastructure, supporting a spectrum from standard TLS to post-quantum cryptography to QKD, rather than requiring greenfield deployments.The transduction grand challenge: Why building the "NIC card" that connects quantum processors to quantum networks—the transducer—is the critical bottleneck for distributed quantum computing and the key technical risk Cisco is addressing.Product-company fit in corporate innovation: How Outshift operates like internal startups within Cisco, focusing on problems adjacent to the company's four pillars (networking, security, observability, collaboration) with both technology risk and market risk, while maintaining agility through a framework adapted from Cisco's acquisition integration playbook.Why It MattersCisco's systems-level approach to quantum networking represents a paradigm shift from viewing quantum as distant future technology to infrastructure deployable today for specific high-value use cases. By focusing on room-temperature, telecom-compatible entanglement sources and software stacks that integrate with existing networks, Cisco is positioning quantum networking as the bridge between classical and quantum computing worlds—potentially accelerating practical quantum applications from decades away to 5-10 years while solving immediate enterprise challenges in security and coordination.Episode HighlightsVijoy's journey from building Hindi chatbots on a BBC Micro in the late 1980s to leading quantum innovation at Cisco. Why quantum networking is "here and now" while quantum computing is still being figured out. The spectrum of quantum network applications: from near-term classical coordination problems to the long-term quantum internet connecting quantum data centers and sensors. How entanglement enables provable intrusion detection on standard fiber networks alongside classical IP traffic. The "step function...
    Show More Show Less
    40 mins
  • Nobel Laureate John Martinis Discusses Superconducting Qubits and Qolab
    Oct 13 2025

    This episode is a first for the show - a repeat of a previously posted interview on The New Quantum Era podcast! I think you'll agree the reason for the repeat is a great one - this episode, recorded at the APS Global Summit in March, features a conversation John Martinis, co-founder and CTO of QoLab and newly minted Nobel Laureate! Last week the Royal Swedish Academy of Sciences made an announcement that John would share the 2025 Nobel Prize for Physics with John Clarke and Michel Devoret “for the discovery of macroscopic quantum mechanical tunnelling and energy quantisation in an electric circuit.” It should come as no surprise that John and I talked about macroscopic quantum mechanical tunnelling and energy quantization in electrical circuits, since those are precisely the attributes that make a superconducting qubit work for computation.

    The work John is doing at Qolab, a superconducting qubit company seeking to build a million qubit device, is really impressive, as befits a Nobel Laureate and a pioneer in the field. In our conversation we explore the strategic shifts, collaborative efforts, and technological innovations that are pushing the boundaries of quantum computing closer to building scalable, million-qubit systems.

    Key Highlights

    • Emerging from Stealth Mode & Million-Qubit System Paper:
      • Discussion on QoLab’s transition from stealth mode and their comprehensive paper on building scalable million-qubit systems.
      • Focus on a systematic approach covering the entire stack.
    • Collaboration with Semiconductor Companies:
      • Unique business model emphasizing collaboration with semiconductor companies to leverage external expertise.
      • Comparison with bigger players like Google, who can fund the entire stack internally.
    • Innovative Technological Approaches:
      • Integration of wafer-scale technology and advanced semiconductor manufacturing processes.
      • Emphasis on adjustable qubits and adjustable couplers for optimizing control and scalability.
    • Scaling Challenges and Solutions:
      • Strategies for achieving scale, including using large dilution refrigerators and exploring optical communication for modular design.
      • Plans to address error correction and wiring challenges using brute force scaling and advanced materials.
    • Future Vision and Speeding Up Development:
      • QoLab’s goal to significantly accelerate the timeline toward achieving a million-qubit system.
      • Insight into collaborations with HP Enterprises, NVIDIA, Quantum Machines, and others to combine expertise in hardware and software.
    • Research Papers Mentioned in this Episode:
      • Position paper on building scalable million-qubit systems
    Show More Show Less
    37 mins
  • Carbon nanotube qubits with Pierre Desjardins
    Sep 27 2025

    Pierre Desjardins is the cofounder of C12, a Paris-based quantum computing hardware startup that specializes in carbon nanotube-based spin qubits. Notably, Pierre founded the company alongside his twin brother, Mathieu, making them the only twin-led deep-tech startups that we know of! Pierre’s journey is unconventional—he is a rare founder in quantum hardware without a PhD, drawing instead on engineering and entrepreneurial experience. The episode dives into what drew him to quantum computing and the pivotal role COVID-19 played in catalyzing his career shift from consulting to quantum technology.

    C12’s Technology and Unique Angle

    C12 focuses on developing high-performance qubits using single-wall carbon nanotubes. Unlike companies centered on silicon or germanium spin qubits, C12 fabricates carbon nanotubes, tests them for impurities, and then assembles them on silicon chips as a final step. The team exclusively uses isotopically pure carbon-12 to minimize magnetic and nuclear spin noise, yielding a uniquely clean environment for electron confinement. This yields ultra-low charge noise and enables the company to build highly coherent qubits with remarkable material purity.

    Key Technical Innovations

    • Spin-Photon Coupling: C12’s system stands out for driving spin qubits using microwave photons, drawing inspiration from superconducting qubit architectures. This enables the implementation of a “quantum bus”—a superconducting interconnect that allows long-range coupling between distant qubits, sidestepping the scaling bottleneck of nearest-neighbor architectures.
    • Addressable Qubits: Each carbon nanotube qubit can be tuned on or off the quantum bus by manipulating the double quantum dot confinement, providing flexible connectivity and the ability to maximize coherence in a memory mode.
    • Stability and Purity: Pierre emphasizes that C12’s suspended architecture dramatically reduces charge noise and results in exceptional stability, with minimal calibration drift, over years-long measurement campaigns—a stark contrast with many superconducting platforms.


    Recent Milestones

    C12 celebrated its fifth anniversary and recently demonstrated the first qubit operation on their platform. The company achieved ultra-long coherence times for spin qubits coupled via a quantum bus, publishing these results in *Nature*. The next milestone is demonstrating two-qubit gates mediated by microwave photons—a development that could set a new benchmark for both C12 and the wider quantum computing industry.

    Challenges and Outlook

    C12’s current focus is scaling up from single-qubit demonstrations to multi-qubit gates with long-range connectivity, a crucial step toward error correction and practical algorithms. Pierre notes the rapid evolution of error-correcting codes, remarking that some codes they are now working on did not exist two years ago. The interview closes with an eye on the race to demonstrate long-distance quantum gates, with Pierre hoping C12 will make industry headlines before larger competitors like IBM.

    Notable Quotes

    • “The more you dig into this technology, the more you understand why this is just the way to build a quantum computer.”
    • “We have the lowest charge noise compared to any kind of spin qubit—this is because of our suspended architecture.”
    • “What we introduced is the concept of a quantum bus… really the only way to scale spin qubits.”


    Episode Themes

    • Entrepreneurship in deep tech without a traditional research background
    • Technical deep dive on carbon nanotube spin qubits and quantum bus architecture
    • Materials science as the foundation of scalable quantum hardware
    • The importance of coherence, noise reduction, and tunable architectures in quantum system design
    • The dynamic evolution of error correction and industry competition


    Listeners interested in cutting-edge hardware, quantum startup journeys, or the science behind scalable qubit platforms will find this episode essential. Pierre provides unique clarity on why C12’s approach offers both conceptual and practical advantages for the future of quantum computing,

    Show More Show Less
    27 mins
No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.