System Prompt Learning for LLM Problem-Solving Strategies cover art

System Prompt Learning for LLM Problem-Solving Strategies

System Prompt Learning for LLM Problem-Solving Strategies

Listen for free

View show details

About this listen

The article introduces System Prompt Learning (SPL), an innovative approach enabling Large Language Models (LLMs) to learn and refine problem-solving strategies through practical experience. This method addresses the current disparity where most developers lack the sophisticated system prompts that make advanced AI assistants so capable. SPL represents a "third paradigm" of LLM learning, augmenting traditional pretraining and finetuning by allowing models to classify problems, apply relevant strategies, and continuously improve these strategies over time. The system maintains a dynamic database of human-readable strategies, demonstrating significant performance improvements across various benchmarks and offering benefits like cumulative learning, transparency, and adaptability. Implemented as an open-source plugin in optillm, SPL offers a practical way to integrate this adaptive intelligence into LLM applications.

No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.