Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management) cover art

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

By: Brian T. O’Neill from Designing for Analytics
Listen for free

About this listen

Is the value of your enterprise analytics SAAS or AI product not obvious through it’s UI/UX? Got the data and ML models right...but user adoption of your dashboards and UI isn’t what you hoped it would be? While it is easier than ever to create AI and analytics solutions from a technology perspective, do you find as a founder or product leader that getting users to use and buyers to buy seems harder than it should be? If you lead an internal enterprise data team, have you heard that a ”data product” approach can help—but you’re concerned it’s all hype? My name is Brian T. O’Neill, and on Experiencing Data—one of the top 2% of podcasts in the world—I share the stories of leaders who are leveraging product and UX design to make SAAS analytics, AI applications, and internal data products indispensable to their customers. After all, you can’t create business value with data if the humans in the loop can’t or won’t use your solutions. Every 2 weeks, I release interviews with experts and impressive people I’ve met who are doing interesting work at the intersection of enterprise software product management, UX design, AI and analytics—work that you need to hear about and from whom I hope you can borrow strategies. I also occasionally record solo episodes on applying UI/UX design strategies to data products—so you and your team can unlock financial value by making your users’ and customers’ lives better. Hashtag: #ExperiencingData. JOIN MY INSIGHTS LIST FOR 1-PAGE EPISODE SUMMARIES, TRANSCRIPTS, AND FREE UX STRATEGY TIPS https://designingforanalytics.com/ed ABOUT THE HOST, BRIAN T. O’NEILL: https://designingforanalytics.com/bio/© 2019 Designing for Analytics, LLC Art Economics Management Management & Leadership
Episodes
  • Building AI Assistants, Not Autopilots: What Tony Zhang’s Research Shows About Automation Blindness
    Jun 24 2025

    Show notes will be available soon.

    Show More Show Less
    44 mins
  • Who Can Succeed in a Data or AI Product Management Role?
    Jun 10 2025
    Today, I’m responding to a listener's question about what it takes to succeed as a data or AI product manager, especially if you’re coming from roles like design/BI/data visualization, data science/engineering, or traditional software product management. This reader correctly observed that most of my content “seems more targeted at senior leadership” — and had asked if I could address this more IC-oriented topic on the show. I’ll break down why technical chops alone aren’t enough, and how user-centered thinking, business impact, and outcome-focused mindsets are key to real success — and where each of these prior roles brings strengths and/or weaknesses. I’ll also get into the evolving nature of PM roles in the age of AI, and what I think the super-powered AI product manager will look like. Highlights/ Skip to: Who can transition into an AI and data product management role? What does it take? (5:29)Software product managers moving into AI product management (10:05)Designers moving into data/AI product management (13:32)Moving into the AI PM role from the engineering side (21:47)Why the challenge of user adoption and trust is often the blocker to the business value (29:56)Designing change management into AI/data products as a skill (31:26)The challenge of value creation vs. delivery work — and how incentives are aligned for ICs (35:17)Quantifying the financial value of data and AI product work(40:23) Quotes from Today’s Episode “Who can transition into this type of role, and what is this role? I’m combining these two things. AI product management often seems closely tied to software companies that are primarily leveraging AI, or trying to, and therefore, they tend to utilize this AI product management role. I’m seeing less of that in internal data teams, where you tend to see data product management more, which, for me, feels like an umbrella term that may include traditional analytics work, data platforms, and often AI and machine learning. I’m going to frame this more in the AI space, primarily because I think AI tends to capture the end-to-end product than data product management does more frequently.” — Brian (2:55) “There are three disciplines I’m going to talk about moving into this role. Coming into AI and data PM from design and UX, coming into it from data engineering (or just broadly technical spaces), and then coming into it from software product management. I think software product management and moving into the AI product management - as long as you’re not someone that has two years of experience, and then 18 years of repeating the second year of experience over and over again - and you’ve had a robust product management background across some different types of products; you can show that the domain doesn’t necessarily stop you from producing value. I think you will have the easiest time moving into AI product management because you’ve shown that you can adapt across different industries.” - Brian (9:45) “Let’s talk about designers next. I’m going to include data visualization, user experience research, user experience design, product design, all those types of broad design, category roles. Moving into data and/or AI product management, first of all, you don’t see too many—I don’t hear about too many designers wanting to move into DPM roles, because oftentimes I don’t think there’s a lot of heavy UI and UX all the time in that space. Or at least the teams that are doing that work feel that’s somebody else’s job because they’re not doing end-to-end product thinking the way I talk about it, so therefore, a lot of times they don’t see the application, the user experience, the human adoption, the change management, they’re just not looking at the world that way, even though I think they should be.” - Brian (13:32) “Coming at this from the data and engineering side, this is the classic track for data product management. At least that is the way I tend to see it. I believe most companies prefer to develop this role in-house. My biggest concern is that you end up with job title changes, but not necessarily the benefits that are supposed to come with this. I do like learning by doing, but having a coach and someone senior who can coach your other PMs is important because there’s a lot of information that you won’t necessarily get in a class or a course. It’s going to come from experience doing the work.” - Brian (22:26) “This value piece is the most important thing, and I want to focus on that. This is something I frequently discuss in my training seminar: how do we attach financial value to the work we’re doing? This is both art and science, but it’s a language that anyone in a product management role needs to be comfortable with. If you’re finding it very hard to figure out how your data product contributes financial value because it’s based on this waterfalling of “We own the model, ...
    Show More Show Less
    50 mins
  • 170 - Turning Data into Impactful AI Products at Experian: Lessons from North American Chief AI Officer Shri Santhnam (Promoted Episode)
    May 27 2025

    Today, I'm chatting with Shri Santhanam, the  EVP of Software Platforms and Chief AI Officer of Experian North America. Over the course of this promoted episode, you’re going to hear us talk about what it takes to build useful consumer and B2B AI products. Shri explains how Experian structures their AI product teams, the company’s approach prioritizing its initiatives, and what it takes to get their AI solutions out the door. We also get into the nuances of building trust with probabilistic AI tools and the absolutely critical role of UX in end user adoption.

    Note: today’s episode is one of my rare Promoted Episodes. Please help support the show by visiting Experian’s links below:

    Links
    • Shri's LinkedIn
    • Experian Assistant | Experian
    • Experian Ascend Platform™ | Experian 
    Show More Show Less
    43 mins

What listeners say about Experiencing Data w/ Brian T. O’Neill (UX for AI Data Products, SAAS Analytics, Data Product Management)

Average Customer Ratings

Reviews - Please select the tabs below to change the source of reviews.

In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.