Ep. 309: “Neuronal Cell Fate and Function” Featuring Dr. Thomas Vierbuchen cover art

Ep. 309: “Neuronal Cell Fate and Function” Featuring Dr. Thomas Vierbuchen

Ep. 309: “Neuronal Cell Fate and Function” Featuring Dr. Thomas Vierbuchen

Listen for free

View show details

About this listen

Guest:

Dr. Thomas Vierbuchen is Assistant Professor of Developmental Biology at Memorial Sloan Kettering Cancer Center. In this episode, he talks about using PSCs to model neurodevelopmental processes. He also discusses his direct reprogramming work and his lab’s recent study on OTX2 in gastrulation. (42:02)

Featured Products and Resources:
  • Submit your abstract for ISSCR 2026!
  • Explore STEMCELL Technologies’ collection of technical videos and webinars on neurological disease modeling.
The Stem Cell Science Round Up

Restoring Function After Spinal Cord Injury: In a non-human primate model of spinal injury, researchers grafted ESC-derived spinal cord neural stem cells and improved forelimb function. (2:00)

Improving HSC Expansion: Inhibiting ferroptosis augments the expansion of HSCs ex vivo. (11:40)

Cardiomyocytes and Macrophage Reprogramming: Injury-induced Clusterin+ cardiomyocytes promote neonatal heart regeneration by reprogramming macrophages. (21:27)

Bone Marrow Organoids: A 3D in vitro bone marrow model captures phenotypic, structural, and functional features of human endosteal bone marrow niches. (33:03)

Image courtesy of Dr. Thomas Vierbuchen

Subscribe to our newsletter!

Never miss updates about new episodes.

Subscribe
No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.