Confessions of a Large Language Model
Failed to add items
Sorry, we are unable to add the item because your shopping cart is already at capacity.
Add to basket failed.
Please try again later
Add to Wish List failed.
Please try again later
Remove from Wish List failed.
Please try again later
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
By:
About this listen
In this episode, Katherine Forrest and Scott Caravello unpack OpenAI researchers’ proposed “confessions” framework designed to monitor for and detect dishonest outputs. They break down the researchers’ proof of concept results and the framework’s resilience to reward hacking, along with its limits in connection with hallucinations. Then they turn to Google DeepMind’s “Distributional AGI Safety,” exploring a hypothetical path to AGI via a patchwork of agents and routing infrastructure, as well as the authors’ proposed four layer safety stack.
##
Learn More About Paul, Weiss’s Artificial Intelligence practice: https://www.paulweiss.com/industries/artificial-intelligence
No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.