AI6 AI in Games: Strategies and Limitations cover art

AI6 AI in Games: Strategies and Limitations

AI6 AI in Games: Strategies and Limitations

Listen for free

View show details

About this listen

This academic text focuses on adversarial search and game theory within artificial intelligence, exploring how AI agents navigate environments where others actively work against them. It primarily discusses game-playing algorithms like minimax and alpha-beta pruning for deterministic, perfect-information games, detailing their mechanics and limitations. The document also addresses more complex scenarios, including stochastic games (involving chance elements like dice) and partially observable games (where information is hidden), introducing expectiminimax and Monte Carlo Tree Search (MCTS) as alternative strategies. Finally, it touches upon the integration of machine learning to enhance game AI, citing examples of AI surpassing human performance in various games like chess and Go.

What listeners say about AI6 AI in Games: Strategies and Limitations

Average Customer Ratings

Reviews - Please select the tabs below to change the source of reviews.

In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.