
#64 Enformer: predicting gene expression from sequence with Žiga Avsec
Failed to add items
Sorry, we are unable to add the item because your shopping cart is already at capacity.
Add to basket failed.
Please try again later
Add to Wish List failed.
Please try again later
Remove from Wish List failed.
Please try again later
Follow podcast failed
Unfollow podcast failed
-
Narrated by:
-
By:
About this listen
In this episode, Jacob Schreiber interviews Žiga Avsec about a recently released model, Enformer. Their discussion begins with life differences between academia and industry, specifically about how research is conducted in the two settings. Then, they discuss the Enformer model, how it builds on previous work, and the potential that models like it have for genomics research in the future. Finally, they have a high-level discussion on the state of modern deep learning libraries and which ones they use in their day-to-day developing.
Links:
- Effective gene expression prediction from sequence by integrating long-range interactions (Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R. Ledsam, Agnieszka Grabska-Barwinska, Kyle R. Taylor, Yannis Assael, John Jumper, Pushmeet Kohli & David R. Kelley )
- DeepMind Blog Post (Žiga Avsec)
If you enjoyed this episode, please consider supporting the podcast on Patreon.
What listeners say about #64 Enformer: predicting gene expression from sequence with Žiga Avsec
Average Customer RatingsReviews - Please select the tabs below to change the source of reviews.
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.