ELO Ratings Questions cover art

ELO Ratings Questions

ELO Ratings Questions

Listen for free

View show details

About this listen

Key Argument
  • Thesis: Using ELO for AI agent evaluation = measuring noise
  • Problem: Wrong evaluators, wrong metrics, wrong assumptions
  • Solution: Quantitative assessment frameworks
The Comparison (00:00-02:00)

Chess ELO

  • FIDE arbiters: 120hr training
  • Binary outcome: win/loss
  • Test-retest: r=0.95
  • Cohen's κ=0.92

AI Agent ELO

  • Random users: Google engineer? CS student? 10-year-old?
  • Undefined dimensions: accuracy? style? speed?
  • Test-retest: r=0.31 (coin flip)
  • Cohen's κ=0.42
Cognitive Bias Cascade (02:00-03:30)
  • Anchoring: 34% rating variance in first 3 seconds
  • Confirmation: 78% selective attention to preferred features
  • Dunning-Kruger: d=1.24 effect size
  • Result: Circular preferences (A>B>C>A)
The Quantitative Alternative (03:30-05:00)

Objective Metrics

  • McCabe complexity ≤20
  • Test coverage ≥80%
  • Big O notation comparison
  • Self-admitted technical debt
  • Reliability: r=0.91 vs r=0.42
  • Effect size: d=2.18
Dream Scenario vs Reality (05:00-06:00)

Dream

  • World's best engineers
  • Annotated metrics
  • Standardized criteria

Reality

  • Random internet users
  • No expertise verification
  • Subjective preferences
Key StatisticsMetricChessAI AgentsInter-rater reliabilityκ=0.92κ=0.42Test-retestr=0.95r=0.31Temporal drift±10 pts±150 ptsHurst exponent0.890.31Takeaways
  1. Stop: Using preference votes as quality metrics
  2. Start: Automated complexity analysis
  3. ROI: 4.7 months to break even
Citations Mentioned
  • Kapoor et al. (2025): "AI agents that matter" - κ=0.42 finding
  • Santos et al. (2022): Technical Debt Grading validation
  • Regan & Haworth (2011): Chess arbiter reliability κ=0.92
  • Chapman & Johnson (2002): 34% anchoring effect
Quotable Moments

"You can't rate chess with basketball fans"

"0.31 reliability? That's a coin flip with extra steps"

"Every preference vote is a data crime"

"The psychometrics are screaming"

Resources
  • Technical Debt Grading (TDG) Framework
  • PMAT (Pragmatic AI Labs MCP Agent Toolkit)
  • McCabe Complexity Calculator
  • Cohen's Kappa Calculator

🔥 Hot Course Offers:
  • 🤖 Master GenAI Engineering - Build Production AI Systems
  • 🦀 Learn Professional Rust - Industry-Grade Development
  • 📊 AWS AI & Analytics - Scale Your ML in Cloud
  • ⚡ Production GenAI on AWS - Deploy at Enterprise Scale
  • 🛠️ Rust DevOps Mastery - Automate Everything
🚀 Level Up Your Career:
  • 💼 Production ML Program - Complete MLOps & Cloud Mastery
  • 🎯 Start Learning Now - Fast-Track Your ML Career
  • 🏢 Trusted by Fortune 500 Teams

Learn end-to-end ML engineering from industry veterans at PAIML.COM

No reviews yet
In the spirit of reconciliation, Audible acknowledges the Traditional Custodians of country throughout Australia and their connections to land, sea and community. We pay our respect to their elders past and present and extend that respect to all Aboriginal and Torres Strait Islander peoples today.